Energy Landscapes of Mini-Dumbbell DNA Octanucleotides
نویسندگان
چکیده
منابع مشابه
Electrostatic free energy landscapes for DNA helix bending.
Nucleic acids are highly charged polyanionic molecules; thus, the ionic conditions are crucial for nucleic acid structural changes such as bending. We use the tightly bound ion theory, which explicitly accounts for the correlation and ensemble effects for counterions, to calculate the electrostatic free energy landscapes for DNA helix bending. The electrostatic free energy landscapes show that ...
متن کاملGeometric Approaches to Gibbs Energy Landscapes and DNA Oligonucleotide Design
DNA codeword design has been a fundamental problem since the early days of DNA computing. The problem calls for finding large sets of single DNA strands that do not crosshybridize to themselves, to each other or to others’ complements. Such strands represent so-called domains, particularly in the language of chemical reaction networks (CRNs). The problem has shown to be of interest in other are...
متن کاملFunnels in Energy Landscapes
Local minima and the saddle points separating them in the energy landscape are known to dominate the dynamics of biopolymer folding. Here we introduce a notion of a “folding funnel” that is concisely defined in terms of energy minima and saddle points, while at the same time conforming to a notion of a “folding funnel” as it is discussed in the protein folding literature. PACS. 87.10.+e General...
متن کاملModel Energy Landscapes
The multidimensional potential-energy “landscape” formalism offers useful insights into the properties of supercooled liquids and glasses. However, its mathematical fundamentals present formidable subtlety and complexity. In the interests of developing a useful approximation for the statistical mechanics of landscapes, we have developed a simple family of models describing the energy-depth dist...
متن کاملIntrinsically Disordered Energy Landscapes
Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2018
ISSN: 1549-9618,1549-9626
DOI: 10.1021/acs.jctc.8b00262